Inserir o nome do Laboratório

Procedimento Operacional Padrão QUIMIAMIL – AMILASE II

Página 1 de 3 POPBIOxxx/xx

USO

Reação cinética para determinação quantitativa de amilase em amostras de soro, plasma e urina humanos. Somente para uso diagnóstico "in vitro".

PRINCÍPIO

A α- amilase cataliza a hidrólise de 2 -cloro-4-nitrofenil-maltotriósido (CNP-G3) a 2 -cloro-4-nitrofenol (CNP). A concentração catalítica determina-se a partir da velocidade de formação do 2-cloro-4-nitrofenol, medido a 405nm.

α - amilase

CNP -- G3 -----> CNP + maltotriosa

AMOSTRA.

Amostra: Soro e Plasma heparinizado e Urina

Armazenamento e estabilidade pré analítico : A amilase na amostra de soro ou plasma é estável por 7 dias em temperatura ambiente e 1 mês entre $2-8^{\circ}$ C.

Amostras de urina são estáveis por 7 dias quando armazenadas a 2 - 8°C, sendo necessário ajustar o pH a 7 (com NaOH), dado que o pH ácido inativa a enzima irreversivelmente.

Todas as amostras são consideradas potencialmente infectantes, portanto sugerimos manuseá-las seguindo as normas estabelecidas de Biossegurança.

Preparo do paciente: Soro: É recomendado um jejum de 4 horas. Todavia, poderá ser modificado seguindo orientação médica.

Urina: Não há preparo específico.

PRODUTO UTILIZADO

Quimiamil - Amilase MS: 10159820166

Fabricante: Ebram Produtos Laboratoriais Ltda.

Rua Julio de Castilhos, 500.

Belenzinho - São Paulo -SP - Brasil - CEP: 03059-001

Para maiores informações sobre sistemas automáticos, entrar em contato com o SAC EBRAM:

Tel. (011) 2291-2811 ou sac@ebram.com

EQUIPAMENTOS

• Procedimento Manual

Espectrofotômetro ou fotômetro com cubeta termostatizada 37ºC para leituras a 405 nm.

Cubetas ou fluxo contínuo com 1.0 cm de passo óptico

Banho-Maria 37ºC

Pipetas calibradas ou dispensador automático para reagentes e amostras

• Procedimento Automatizado

Indicar o nome, modelo e o local onde se encontra o equipamento analisador automatizado, fazendo referência ao manual (ou POP) para uilização do mesmo

• Procedimento alternativo

Indicar o equipamento alternativo e os respectivos procedimentos para medição dos ensaios. Enumerar as diferenças esperadas quando procedimentos manuais substituem automatizados.

CONTROLE DE QUALIDADE

Cada laboratório deve manter um programa interno de qualidade que defina objetivos, procedimentos, normas, limites de tolerância e ações corretivas. Deve-se manter também um sistema definido para se monitorar a variação analítica do sistema de medição. Aconselhamos o uso dos soros controle Quimicontrol Normal e Quimicontrol Anormal Ebram Cód. 12024/7024 e 12031/7031.

PROCEDIMENTO

Procedimento Manual

- 1. Em 1 tubo de ensaio acrescentar 1 mL de reagente e pré aquecê-lo por 1 minuto em banho maria (BM) a 37º C. O nível de água no BM deve ser superior ao nível de reagentes nos tubos de ensaio.
- 2. Zerar o espectrofotômetro a 405 nm com água destilada.
- 3.Cuidadosamente, adicionar 20µL do soro controle/amostra (soro) no tubo correspondente, homogeneizar e deixar em BM a 37ºC. Acionar o cronômetro.

Inserir o nome do Laboratório

Procedimento Operacional Padrão QUIMIAMIL – AMILASE II

Página 1 de 3 POPBIOxxx/xx

- Registrar a absorbância inicial (A1) e as absorbâncias A2, A3 e A4 quando completar 1, 2 e 3 minutos respectivamente.
- 5. Determinar as duas diferenças de absorbância/min (Δ Abs/min), subtraindo cada leitura de sua anterior.
- Determinar a média das diferenças de absorbância (Δ Abs/min). Proceder em seguida do mesmo modo com todas as amostras.

Nota: Realizar a incubação das amostras e soro controle individualmente.

Obs.: Procedimento sugerido para espectrofotômetros que requerem volume mínimo de 1,0 mL e podem ser ajustados proporcionalmente sem influência no desempenho do teste. Salientamos que volumes de amostra menores do que 10 µL aumentam a imprecisão da medição em aplicações manuais.

Procedimento Automatizado

Aplicação no sistema automatizado: vide manual para utilização do equipamento e instruções de uso do reagente.

Aplicação no sistema semi-automático: Em um tubo de ensaio acrescentar 1,0 mL de reagente, adicionar 20 µL de amostras/soro controle. Ler imediatamente no equipamento, preparar também um tubo contendo pelo menos 0,50 mL de reagente (os equipamentos no início do procedimento, solicitam que seja introduzido o reagente para verificação da absorbância do reagente), seguir protocolo analítico específico baseado no item Parâmetros do Sistema. Pode-se utilizar o fator de calibração enunciado para o procedimento manual, pequenos ajustes podem ser necessários.

• Precauções e cuidados especiais

Este reagente deve ser usado somente para diagnóstico "in vitro".

Pipetar com a boca, soprar no reagente, usar material contaminado com saliva e conversar junto ao frasco destampado, são ações que podem contaminar o reagente com quantidade microscópicas de saliva, capazes de deteriorar irremediavelmente o reagente.

Evitar contato com a pele e roupa. No caso de contato com os olhos, lavar com grande quantidade de água e procurar auxílio médico.

O reagente contém azida sódica como conservante (0,1%). Este componente pode reagir com cobre e chumbo podendo tornar-se um metal explosivo. Ao descartá-lo, adicionar grande quantidade de água.

Deve-se monitorar a temperatura do ambiente de trabalho bem como o tempo de reação para obtenção de resultados corretos.

Indicação de deterioração do reagente: presença de partículas, turvação, absorbância do branco superior a 0.500 quando medido a 405 nm (cuveta de 1cm).

CÁLCULOS

Média Δ Abs/min = (A2-A1) + (A3-A2) + (A4-A3)

3

Amilase Amostra U/L = Média Δ Abs/min x Fator

Fator a 37°C= 3292 (soro) e 6520 (urina)

Calculo para Urina 24 horas:

Urina: Amilase amostra (U/L) x fator de diluição x volume (L)

RESULTADOS

- Unidade de medida = U/L
- Unidade de Conversão, : ukat/L = U/L x 16,7
- Valores de Referência

Os seguintes valores são baseados nas medições desempenhadas a 37ºC.

Soro ou plasma: 22 - 80 U/L

Urina: < 321 U/L

Estes valores são dados unicamente como título orientativo. É recomendado que cada laboratório estabeleça seu próprio intervalo de referência.

Inserir o nome do Laboratório

Procedimento Operacional Padrão QUIMIAMIL – AMILASE II

Página 1 de 3 POPBIOxxx/xx

LIMITAÇÕES DO PROCEDIMENTO

• Linearidade / Sensibilidade

Quando executado de acordo com o recomendado, o teste é linear até 1317 U/L L no soro e 2600 U/L na urina. Amostras com valores superiores aos descritos acima devem ser diluídas com solução salina a ponto de ficarem abaixo da linearidade e os resultados devem ser multiplicados pelo fator de diluição.

Sensibilidade: 1.8 U/L

Interferências:

Amostras hemolisadas não devem ser usadas uma vez que os eritrócitos contêm contaminantes e enzimas, os quais irão interferir no teste.

Bilirrubina até 20 mg/dL e Triglicérides até 10 g/L não interferem significativamente no resultado. A Hemoglobina $(2,5\,\mathrm{g/L})$ interfere.

Amostras com citrato, EDTA ou oxalato não devem ser usadas porque produzem resultados falsamente diminuídos.

Algumas drogas e substâncias afetam a concentração da Amilase, sugerimos consultar Young et al.

SIGNIFICADO CLÍNICO

A alfa-amilase é derivada principalmente das glândulas salivares e do pâncreas exócrino. A enzima é uma molécula relativamente pequena que é rapidamente filtrada pelos rins e excretada na urina.

A alfa-amilase é mais freqüentemente medida no diagnóstico de pancreatite aguda quando níveis no soro podem estar grosseiramente elevados. Na pancreatite aguda a alfa-amilase começa a aumentar aproximadamente 4 horas após o início da dor, atingindo picos em 24 horas e permanecendo elevados de 3 - 7 dias.

Hiperamilasemia está também associada com outras desordens abdominais agudas, doenças do trato biliar, cetoacidose diabética, disfunção glomerular severa, desordens da glândula salivar, ruptura de gravidez ectópica e macroamilasemia.

REFERÊNCIAS

- 1. Tietz, N.W., Textbook of Clinical Chemistry, 2nd Edition, Philadelphia (PA), W.B. Saunders.p.854-861 (1994)
- 2. Young, D.S., et al, Clin. Chem, 21:1D (1975).
- 3. Expert Panel of Enzymes of the Internacional Federation of Clinical Chemistry, Clin. Chem. 24:497-510 (1986)
- 4. Kaplan, L.A. and Pesce, J.J., Clinical Chemistry: Theory, analysis, and correlation, 3rd Edition, St. Louis (MO), Mosby, p. 567-568 (1996)
- 5. Miller, O., Gonçalves, R.R., Laboratório para o Clínico, 8 ed., Atheneu, (1998).
- 6. Arquivos da EBRAM

	Nome	Assinatura	Data
Elaborado por			
Aprovado por			
Revisado por			
Desativado por			
Razão			

VER Abr/14